

«Информационные технологии проектирования радиоэлектронных средств»

- **№ 1.** Предложить варианты конструкции сочленения корпуса и крышки модуля высокочастотного РЭС.
 - Диапазон частот 2-3 ГГц.
 - Должны быть обеспечены:
 - защита от воздействия соляного (морского) тумана;
 - защита от инея и росы;
 - ремонтопригодность;
 - электрический контакт по периметру.

Представление результатов:

- Эскизы.
- Пояснительная записка.

№ 2. Рассчитать конструктивно-технологические параметры двухсторонней печатной плат, в том числе определить максимальный диаметр контактной площадки и количество проводников, которые можно разместить на печатной плате между двумя металлизированными отверстиями.

Исходные данные: метод изготовления платы – полуаддитивный; способ получения рисунка — фотохимический; фоторезист сухой плёночный; расстояние между металлизированными отверстиями 3,75 мм; шаг координатной сетки 1,25 мм; диаметр неметаллизированных отверстий 1,0 мм; материал платы — стеклотекстолит марки СТЭФ-1-2ЛК; плотность печатного монтажа — 3-й класс; металлический резист — оплавляемый сплав оловосвинец.

№ 3. Рассчитать конструктивно-технологические параметры двухсторонней печатной платы функционального узла. Выбрать материал и толщину платы. Определить геометрические размеры элементов печатного монтажа (диаметр контактных площадок и ширину проводника), число проводников, которые можно провести между соседними контактными площадками.

Исходные данные: метод изготовления печатной платы — комбинированный позитивный; способ получения рисунка — фотохимический; минимальное расстояние между двумя монтажными отверстиями l=3,75~mm; диаметр неметаллизированого монтажного отверстия $d_{\rm cB}=0,7~mm$; форма контактной площадки - круглая; плотность печатного монтажа 3-й класс; резистивное покрытие — олово-свинец.

№ 4. Определить количество проводников, которые можно разместить на двусторонней печатной плате между двумя отверстиями.

Исходные данные: метод изготовления платы — комбинированный позитивный; расстояние между отверстиями 2,5 мм; максимальный диаметр контактной площадки 1,5 мм; шаг координатной сетки 1,25 мм; плотность печатного монтажа — 3-й класс; материал платы — стеклотекстолит фольгированный марки СФ-2-35.

№ 5. Определить минимально допустимую ширину печатного проводника, падение напряжения, мощность потерь двух параллельных печатных проводников.

Исходные данные: напряжение питания $U_{\text{пит}} = 12 \text{ B}$; максимальный ток, проходящий через проводник, $I_{max} = 0.7 \text{ A}$; размер платы 45 x 75 мм; материал платы $- \text{ С}\Phi\text{-}2\text{-}35$; метод изготовления - комбинированный позитивный; способ получения рисунка - фотохимический; фоторезист сухой пленочный; резистивное покрытие - олово-свинец; $h_{n,m} = 0.0065 \text{ мм}$; $h_{\phi} = 0.035 \text{ мм}$; $h_{\epsilon} = 0.055 \text{ мм}$; l = 0.03 м; $\rho = 0.020 \text{ Ом мм}^2 / \text{м}$; $j_{\partial on} = 30 \text{ A/мм}^2$; $tg \delta = 0.002$; $C = 9 \cdot 10^{-3} EF/h$ — емкость печатной платы в $\Pi\Phi$ (E = 6.0; $F = 2200 \text{ мм}^2$; h = 1.5 мм ; $f = 1 \text{ M}\Gamma\text{ц}$); для 2-го класса $\Pi\Pi$ по ΓOCT 23751-86 $b_{3ag} = 0.2 \text{ мм}$; (при расчете мощности потерь $f [\text{M}\Gamma\text{ц}]$, $C [\text{мк}\Phi]$, U [B]).

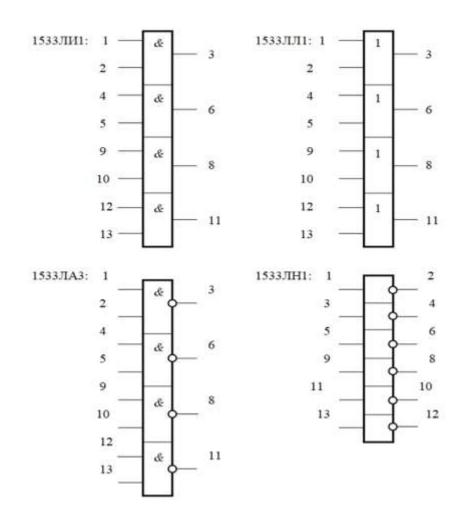
- № 6. Определить значение собственной резонансной частоты платы из стеклотекстолита ($\rho = 3 \text{ г/см}^3$, $k_M = 0.54$) толщиной 1,2 мм, размеры сторон которой 150х100 мм, а коэффициент B составляет 124 единицы. Масса элементов, равномерно размещенных на поверхности платы, составляет 70 г.
- № 7. Определить амплитуду колебаний центра печатной платы на резонансной частоте, если логарифмический декремент платы $\delta = 0.067$, а амплитуда колебаний мест закрепления платы -0.02 мм.

№ 8. Выполнить расчет размеров панели, компонентов и светотехнических характеристик компонентов панели Анализатор АФУ Anritsu Site Master S331D.

№ 9. Выполнить расчет размеров панели, компонентов и светотехнических характеристик компонентов панели Генератор ВК 4075.

№ 10. Выполнить расчет размеров панели, компонентов и светотехнических характеристик компонентов панели Измеритель мощности Rohde&Schwarz NAS.

№ 11. Выполнить расчет эргономических характеристик органов управления, времени информационного поиска и расчет алгоритма работы оператора для РЭУ: Источник питания 382203.



№ 12. Выполнить расчет размеров панели, компонентов и светотехнических характеристик компонентов панели, эргономических характеристик органов управления, времени информационного поиска и расчет алгоритма работы оператора для РЭУ: Источник питания VSP12010.

№ 13.1 – 13.6.

Используя цифровые микросхемы: 1533ЛИ1 (2И), 1533ЛЛ1 (2ИЛИ), 1533ЛН1 (НЕ), 1533ЛА3 (2И - НЕ) (см. рис.), а также вспомогательные элементы (переключатели и светодиоды), составить принципиальные схемы, реализующие логические функции, соответствующие варианту задачи (табл.1).

Варианты заданий для синтеза принципиальной схемы

№ задачи	Реализуемая логическая функция	№ задачи	Реализуемая логическая функция
13.1.	$A*B*C+\overline{\overline{D}}$	13.4.	$\overline{A*\overline{B}+C+D}$
13.2.	$\overline{A*\overline{B}*C+D}$	13.5.	$\overline{(A+B)*C*\overline{D}}$
13.3.	$\overline{(A+B+C)*\overline{D}}$	13.6.	$\overline{(A+\overline{B})*C*D}$

Построить и занести в отчет логическую схему, соответствующую варианту задачи. Поскольку в каждой из микросхем имеется по несколько логических вентилей, составление принципиальных схем производить, исходя из минимального количества микросхем.